Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
2.
Metabolites ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38392983

RESUMO

Temperature plays a fundamental role in biology, influencing cellular function, chemical reaction rates, molecular structures, and interactions. While the temperature dependence of many biochemical reactions is well defined in vitro, the effect of temperature on metabolic function at the network level is poorly understood, and it remains an important challenge in optimizing the storage of cells and tissues at lower temperatures. Here, we used time-course metabolomic data and systems biology approaches to characterize the effects of storage temperature on human platelets (PLTs) in a platelet additive solution. We observed that changes to the metabolome with storage time do not simply scale with temperature but instead display complex temperature dependence, with only a small subset of metabolites following an Arrhenius-type relationship. Investigation of PLT energy metabolism through integration with computational modeling revealed that oxidative metabolism is more sensitive to temperature changes than glycolysis. The increased contribution of glycolysis to ATP turnover at lower temperatures indicates a stronger glycolytic phenotype with decreasing storage temperature. More broadly, these results demonstrate that the temperature dependence of the PLT metabolic network is not uniform, suggesting that efforts to improve the health of stored PLTs could be targeted at specific pathways.

3.
Eur J Med Res ; 29(1): 71, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245777

RESUMO

Sepsis is a major cause of death worldwide, with a mortality rate that has remained stubbornly high. The current gold standard of risk stratifying sepsis patients provides limited mechanistic insight for therapeutic targeting. An improved ability to predict sepsis mortality and to understand the risk factors would allow better treatment targeting. Sepsis causes metabolic dysregulation in patients; therefore, metabolomics offers a promising tool to study sepsis. It is also known that that in sepsis endothelial cells affecting their function regarding blood clotting and vascular permeability. We integrated metabolomics data from patients admitted to an intensive care unit for sepsis, with commonly collected clinical features of their cases and two measures of endothelial function relevant to blood vessel function, platelet endothelial cell adhesion molecule and soluble thrombomodulin concentrations in plasma. We used least absolute shrinkage and selection operator penalized regression, and pathway enrichment analysis to identify features most able to predict 30-day survival. The features important to sepsis survival include carnitines, and amino acids. Endothelial proteins in plasma also predict 30-day mortality and the levels of these proteins also correlate with a somewhat overlapping set of metabolites. Overall metabolic dysregulation, particularly in endothelial cells, may be a contributory factor to sepsis response. By exploring sepsis metabolomics data in conjunction with clinical features and endothelial proteins we have gained a better understanding of sepsis risk factors.


Assuntos
Histidina , Lisofosfolipídeos , Sepse , Humanos , Histidina/uso terapêutico , Células Endoteliais/metabolismo , Esfingosina/uso terapêutico , Sepse/tratamento farmacológico , Fosfatos/uso terapêutico
4.
Antioxidants (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136196

RESUMO

Burn wound healing is a complex process orchestrated through successive biochemical events that span from weeks to months depending on the depth of the wound. Here, we report an untargeted metabolomics discovery approach to capture metabolic changes during the healing of deep partial-thickness (DPT) and full-thickness (FT) burn wounds in a porcine burn wound model. The metabolic changes during healing could be described with six and seven distinct metabolic trajectories for DPT and FT wounds, respectively. Arginine and histidine metabolism were the most affected metabolic pathways during healing, irrespective of burn depth. Metabolic proxies for oxidative stress were different in the wound types, reaching maximum levels at day 14 in DPT burns but at day 7 in FT burns. We examined how acellular fish skin graft (AFSG) influences the wound metabolome compared to other standard-or-care burn wound treatments. We identified changes in metabolites within the methionine salvage pathway, specifically in DPT burn wounds that is novel to the understanding of the wound healing process. Furthermore, we found that AFSGs boost glutamate and adenosine in wounds that is of relevance given the importance of purinergic signaling in regulating oxidative stress and wound healing. Collectively, these results serve to define biomarkers of burn wound healing. These results conclusively contribute to the understanding of the multifactorial mechanism of the action of AFSG that has traditionally been attributed to its structural properties and omega-3 fatty acid content.

5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768579

RESUMO

In trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by integrating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center. Mass spectrometry was conducted on admission samples of plasma metabolites. Quantified metabolites were analyzed by computational network analysis of the iEC-GEM. Four plasma metabolic phenotypes (A-D) were identified, of which phenotype D was associated with an increased injury severity score (p < 0.001); 90% (91.6%) of the patients who died within 72 h possessed this phenotype. The inferred EC metabolic patterns were found to be different between phenotype A and D. Phenotype D was unable to maintain adequate redox homeostasis. We confirm that trauma patients presented four metabolic phenotypes at admission. Phenotype D was associated with increased mortality. Different EC metabolic patterns were identified between phenotypes A and D, and the inability to maintain adequate redox balance may be linked to the high mortality.


Assuntos
Choque , Humanos , Estudos Prospectivos , Fenótipo , Metabolômica , Células Endoteliais
6.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682894

RESUMO

BACKGROUND: The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS: 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS: Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS: We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.


Assuntos
Proteoma , Proteômica , Biomarcadores , Catecolaminas , Humanos , Inflamação , Estudos Prospectivos
7.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328583

RESUMO

Disruption to endothelial cell homeostasis results in an extensive variety of human pathologies that are particularly relevant to major trauma. Circulating catecholamines, such as adrenaline and noradrenaline, activate endothelial adrenergic receptors triggering a potent response in endothelial function. The regulation of the endothelial cell metabolism is distinct and profoundly important to endothelium homeostasis. However, a precise catalogue of the metabolic alterations caused by sustained high catecholamine levels that results in endothelial dysfunction is still underexplored. Here, we uncover a set of up to 46 metabolites that exhibit a dose-response relationship to adrenaline-noradrenaline equimolar treatment. The identified metabolites align with the glutathione-ascorbate cycle and the nitric oxide biosynthesis pathway. Certain key metabolites, such as arginine and reduced glutathione, displayed a differential response to treatment in early (4 h) compared to late (24 h) stages of sustained stimulation, indicative of homeostatic metabolic feedback loops. Furthermore, we quantified an increase in the glucose consumption and aerobic respiration in endothelial cells upon catecholamine stimulation. Our results indicate that oxidative stress and nitric oxide metabolic pathways are downstream consequences of endothelial cell stimulation with sustained high levels of catecholamines. A precise understanding of the metabolic response in endothelial cells to pathological levels of catecholamines will facilitate the identification of more efficient clinical interventions in trauma patients.


Assuntos
Catecolaminas , Óxido Nítrico , Permeabilidade Capilar , Catecolaminas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacologia , Humanos , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia
8.
Pathogens ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335674

RESUMO

Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. MATERIALS AND METHODS: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. RESULTS: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. CONCLUSIONS: PI has limited effect on protein concentration stored PC supernatant. The protein's changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.

9.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923141

RESUMO

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Frutosefosfatos , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estresse Oxidativo , Transaminases/metabolismo
10.
Planta Med ; 88(11): 891-898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34521132

RESUMO

The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.


Assuntos
Líquens , Neoplasias , 4-Butirolactona/análogos & derivados , Proliferação de Células , Glutationa/metabolismo , Líquens/química , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Oncol ; 16(9): 1816-1840, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34942055

RESUMO

Metabolic rewiring is one of the indispensable drivers of epithelial-mesenchymal transition (EMT) involved in breast cancer metastasis. In this study, we explored the metabolic changes during spontaneous EMT in three separately established breast EMT cell models using a proteomic approach supported by metabolomic analysis. We identified common proteomic changes, including the expression of CDH1, CDH2, VIM, LGALS1, SERPINE1, PKP3, ATP2A2, JUP, MTCH2, RPL26L1 and PLOD2. Consistently altered metabolic enzymes included the following: FDFT1, SORD, TSTA3 and UDP-glucose dehydrogenase (UGDH). Of these, UGDH was most prominently altered and has previously been associated with breast cancer patient survival. siRNA-mediated knock-down of UGDH resulted in delayed cell proliferation and dampened invasive potential of mesenchymal cells and downregulated expression of the EMT transcription factor SNAI1. Metabolomic analysis revealed that siRNA-mediated knock-down of UGDH decreased intracellular glycerophosphocholine (GPC), whereas levels of acetylaspartate (NAA) increased. Finally, our data suggested that platelet-derived growth factor receptor beta (PDGFRB) signalling was activated in mesenchymal cells. siRNA-mediated knock-down of PDGFRB downregulated UGDH expression, potentially via NFkB-p65. Our results support an unexplored relationship between UGDH and GPC, both of which have previously been independently associated with breast cancer progression.


Assuntos
Neoplasias da Mama , Cetona Oxirredutases , Neoplasias da Mama/patologia , Carboidratos Epimerases , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Glucose Desidrogenase , Humanos , Proteômica , RNA Interferente Pequeno , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Difosfato de Uridina , Uridina Difosfato Glucose Desidrogenase/metabolismo
12.
Bioengineering (Basel) ; 8(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34940360

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent post-natal stem cells with applications in tissue engineering and regenerative medicine. MSCs can differentiate into osteoblasts, chondrocytes, or adipocytes, with functional differences in cells during osteogenesis accompanied by metabolic changes. The temporal dynamics of these metabolic shifts have not yet been fully characterized and are suspected to be important for therapeutic applications such as osteogenesis optimization. Here, our goal was to characterize the metabolic shifts that occur during osteogenesis. We profiled five key extracellular metabolites longitudinally (glucose, lactate, glutamine, glutamate, and ammonia) from MSCs from four donors to classify osteogenic differentiation into three metabolic stages, defined by changes in the uptake and secretion rates of the metabolites in cell culture media. We used a combination of untargeted metabolomic analysis, targeted analysis of 13C-glucose labelled intracellular data, and RNA-sequencing data to reconstruct a gene regulatory network and further characterize cellular metabolism. The metabolic stages identified in this proof-of-concept study provide a framework for more detailed investigations aimed at identifying biomarkers of osteogenic differentiation and small molecule interventions to optimize MSC differentiation for clinical applications.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34753002

RESUMO

The use of acellular fish skin grafts (FSG) for the treatment of burn wounds is becoming more common due to its beneficial wound healing properties. In our previous study we demonstarted that FSG is a scaffold biomaterial that is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) conjugated to phosphatidylcholines. Here we investigated whether EPA and DHA derived lipid mediators are influenced during the healing of burn wounds treated with FSG. Deep partial and full thickness burn wounds (DPT and FT, respectively) were created on Yorkshire pigs (n = 4). DPT were treated with either FSG or fetal bovine dermis while FT were treated either with FSG or cadaver skin initially and followed by a split thickness skin graft. Punch biopsies were collected on days 7, 14, 21, 28 and 60 and analyzed in respect of changes to approximately 45 derivatives of EPA, DHA, arachidonic acid (AA), and linoleic acid (LA) employing UPLC-MS/MS methodology. Nine EPA and DHA lipid mediators, principally mono-hydroxylated derivatives such as 18-HEPE and 17-HDHA, were significantly higher on day 7 in the DPT when treated with FSG. A similar but non-significant trend was observed for the FT. The results suggest that the use of FSG in burn wound treatment can alter the formation of EPA and DHA mono hydroxylated lipid mediators in comparison to other grafts of mammalian origin. The differences observed during the first seven days after treatment indicates that FSG affects the early stages of wound healing.


Assuntos
Queimaduras/terapia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Gadiformes , Lipidômica/métodos , Transplante de Pele/métodos , Animais , Queimaduras/etiologia , Queimaduras/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Fosfatidilcolinas/metabolismo , Suínos , Espectrometria de Massas em Tandem , Cicatrização
14.
NPJ Syst Biol Appl ; 7(1): 36, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535676

RESUMO

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Assuntos
Neoplasias da Mama , Proteômica , Argininossuccinato Liase/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Genoma , Humanos
15.
Mol Cancer Res ; 19(9): 1546-1558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088869

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Glutamina/metabolismo , Inibidores de MTOR/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metaboloma , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Glicólise , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Via de Pentose Fosfato , Células Tumorais Cultivadas
16.
Front Cell Dev Biol ; 9: 642681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150750

RESUMO

Since their initial discovery in 1976, mesenchymal stem cells (MSCs) have been gathering interest as a possible tool to further the development and enhancement of various therapeutics within regenerative medicine. However, our current understanding of both metabolic function and existing differences within the varying cell lineages (e.g., cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic network to understand the activity of various metabolic pathways and compare their usage under different conditions and use these models to perform experimental design. We present three new genome-scale metabolic models (GEMs) each representing a different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically feasible and have distinctive cell lineage characteristics that can be used to explore metabolic function and increase our understanding of these phenotypes. We present the most distinctive differences between these lineages when it comes to enriched metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we hope these mechanistic models will aid in the understanding and therapeutic potential of MSCs.

17.
J Alzheimers Dis ; 81(1): 231-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814423

RESUMO

BACKGROUND: Understanding how dysregulation in lipid metabolism relates to the severity of Alzheimer's disease (AD) pathology might be critical in developing effective treatments. OBJECTIVE: To identify lipid species in cerebrospinal fluid (CSF) associated with signature AD pathology and to explore their relationships with measures reflecting AD-related processes (neurodegeneration, inflammation, deficits in verbal episodic memory) among subjects at the pre- and early symptomatic stages of dementia. METHODS: A total of 60 subjects that had been referred to an Icelandic memory clinic cohort were classified as having CSF AD (n = 34) or non-AD (n = 26) pathology profiles. Untargeted CSF lipidomic analysis was performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) for the detection of mass-to-charge ratio (m/z) features. CSF proteins reflecting neurodegeneration (neurofilament light [NFL]) and inflammation (chitinase-3-like protein 1 [YKL-40], S100 calcium-binding protein B [S100B], glial fibrillary acidic protein [GFAP]) were also measured. Rey Auditory Verbal Learning (RAVLT) and Story tests were used for the assessment of verbal episodic memory. RESULTS: Eight out of 1008 features were identified as best distinguishing between the CSF profile groups. Of those, only the annotation of the m/z feature assigned to lipid species C18 ceramide was confirmed with a high confidence. Multiple regression analyses, adjusted for age, gender, and education, demonstrated significant associations of CSF core AD markers (Aß42: st.ß= -0.36, p = 0.007; T-tau: st.ß= 0.41, p = 0.005) and inflammatory marker S100B (st.ß= 0.51, p = 0.001) with C18 ceramide levels. CONCLUSION: Higher levels of C18 ceramide associated with increased AD pathology and inflammation, suggesting its potential value as a therapeutic target.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Ceramidas/líquido cefalorraquidiano , Demência/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cromatografia Líquida , Progressão da Doença , Feminino , Humanos , Inflamação/líquido cefalorraquidiano , Masculino , Memória Episódica , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Espectrometria de Massas em Tandem , Proteínas tau/líquido cefalorraquidiano
18.
Artigo em Inglês | MEDLINE | ID: mdl-32296688

RESUMO

Mesenchymal stem cells are a promising source for externally grown tissue replacements and patient-specific immunomodulatory treatments. This promise has not yet been fulfilled in part due to production scaling issues and the need to maintain the correct phenotype after re-implantation. One aspect of extracorporeal growth that may be manipulated to optimize cell growth and differentiation is metabolism. The metabolism of MSCs changes during and in response to differentiation and immunomodulatory changes. MSC metabolism may be linked to functional differences but how this occurs and influences MSC function remains unclear. Understanding how MSC metabolism relates to cell function is however important as metabolite availability and environmental circumstances in the body may affect the success of implantation. Genome-scale constraint based metabolic modeling can be used as a tool to fill gaps in knowledge of MSC metabolism, acting as a framework to integrate and understand various data types (e.g., genomic, transcriptomic and metabolomic). These approaches have long been used to optimize the growth and productivity of bacterial production systems and are being increasingly used to provide insights into human health research. Production of tissue for implantation using MSCs requires both optimized production of cell mass and the understanding of the patient and phenotype specific metabolic situation. This review considers the current knowledge of MSC metabolism and how it may be optimized along with the current and future uses of genome scale constraint based metabolic modeling to further this aim.

19.
BMC Bioinformatics ; 21(1): 130, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245365

RESUMO

BACKGROUND: New technologies have given rise to an abundance of -omics data, particularly metabolomic data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the development of innovative computational visualization methodologies. Here, we present GEM-Vis, an original method for the visualization of time-course metabolomic data within the context of metabolic network maps. We demonstrate the utility of the GEM-Vis method by examining previously published data for two cellular systems-the human platelet and erythrocyte under cold storage for use in transfusion medicine. RESULTS: The results comprise two animated videos that allow for new insights into the metabolic state of both cell types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a nicotinamide accumulation that mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower activity during the first few days of the storage period. The second case study displays drastic changes in specific erythrocyte metabolite pools at different times during storage at different temperatures. CONCLUSIONS: The new visualization technique GEM-Vis introduced in this article constitutes a well-suitable approach for large-scale network exploration and advances hypothesis generation. This method can be applied to any system with data and a metabolic map to promote visualization and understand physiology at the network level. More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics data types. The supplement includes a comprehensive user's guide and links to a series of tutorial videos that explain how to prepare model and data files, and how to use the software SBMLsimulator in combination with further tools to create similar animations as highlighted in the case studies.


Assuntos
Redes e Vias Metabólicas , Metabolômica/métodos , Plaquetas/metabolismo , Eritrócitos/metabolismo , Humanos , Metaboloma
20.
Lab Invest ; 100(7): 928-944, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203150

RESUMO

The tumor microenvironment is increasingly recognized as key player in cancer progression. Investigating heterotypic interactions between cancer cells and their microenvironment is important for understanding how specific cell types support cancer. Forming the vasculature, endothelial cells (ECs) are a prominent cell type in the microenvironment of both normal and neoplastic breast gland. Here, we sought out to analyze epithelial-endothelial cross talk in the breast using isogenic non-tumorigenic vs. tumorigenic breast epithelial cell lines and primary ECs. The cellular model used here consists of D492, a breast epithelial cell line with stem cell properties, and two isogenic D492-derived EMT cell lines, D492M and D492HER2. D492M was generated by endothelial-induced EMT and is non-tumorigenic while D492HER2 is tumorigenic, expressing the ErbB2/HER2 oncogene. To investigate cellular cross talk, we used both conditioned medium (CM) and 2D/3D co-culture systems. Secretome analysis of D492 cell lines was performed using mass spectrometry and candidate knockdown (KD), and overexpression (OE) was done using siRNA and CRISPRi/CRISPRa technology. D492HER2 directly enhances endothelial network formation and activates a molecular axis in ECs promoting D492HER2 migration and invasion, suggesting an endothelial feedback response. Secretome analysis identified extracellular matrix protein 1 (ECM1) as potential angiogenic inducer in D492HER2. Confirming its involvement, KD of ECM1 reduced the ability of D492HER2-CM to increase endothelial network formation and induce the endothelial feedback, while recombinant ECM1 (rECM1) increased both. Interestingly, NOTCH1 and NOTCH3 expression was upregulated in ECs upon treatment with D492HER2-CM or rECM1 but not by CM from D492HER2 with ECM1 KD. Blocking endothelial NOTCH signaling inhibited the increase in network formation and the ability of ECs to promote D492HER2 migration and invasion. In summary, our data demonstrate that cancer-secreted ECM1 induces a NOTCH-mediated endothelial feedback promoting cancer progression by enhancing migration and invasion. Targeting this interaction may provide a novel possibility to improve cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Invasividade Neoplásica/genética , Receptor ErbB-2/metabolismo , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Receptor ErbB-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...